skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bowers, Brian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Agentic AI and Multi-Agent Systems are poised to dominate industry and society imminently. Powered by goal- driven autonomy, they represent a powerful form of generative AI, marking a transition from reactive content generation into proactive multitasking capabilities. As an exemplar, we propose an architecture of a multi-agent system for the implementation phase of the software engineering process. We also present a comprehensive threat model for the proposed system. We demon- strate that while such systems can generate code quite accurately, they are vulnerable to attacks, including code injection. Due to their autonomous design and lack of humans in the loop, these systems cannot identify and respond to attacks by themselves. This paper analyzes the vulnerability of multi-agent systems and concludes that the coder-reviewer-tester architecture is more resilient than both the coder and coder-tester architectures, but is less efficient at writing code. We find that by adding a security analysis agent, we mitigate the loss in efficiency while achieving even better resiliency. We conclude by demonstrating that the security analysis agent is vulnerable to advanced code injection attacks, showing that embedding poisonous few-shot examples in the injected code can increase the attack success rate from 0% to 71.95%. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026